BCC-algebras with pseudo-valuations

Young Bae Jun ${ }^{\text {a }}$, Sun Shin Ahn ${ }^{\text {b,* }}$, Eun Hwan Roh ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics Education (and RINS), Gyeongsang National University, Chinju 660-701, Korea
${ }^{b}$ Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea
${ }^{c}$ Department of Mathematics Education, Chinju National University of Education, Chinju 660-756, Korea

Abstract

The notion of pseudo-valuations (valuations) on a BCC-algebra is introduced by using the Buşneag's model ([1-3]), and a pseudo-metric is induced by a pseudo-valuation on BCC-algebras. Conditions for a real-valued function to be an BCK-pseudo-valuation are provided. The fact that the binary operation in BCC-algebras is uniformly continuous is provided based on the notion of (pseudo) valuation.

1. Introduction

In 1966, Y. Imai and K. Iséki (cf. [8]) defined a class of algebras of type $(2,0)$ called BCK-algebras which generalizes on one hand the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra (cf. [8]). The class of all BCKalgebras is a quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [12]) whether the class of BCK-algebras is a variety. In connection with this problem, Y. Komori (cf. [10]) introduced a notion of BCC-algebras, and W. A. Dudek (cf. [4, 5]) redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [7], W. A. Dudek and X. H. Zhang introduced a new notion of ideals in BCC-algebras and described connections between such ideals and congruences. Buşneag [2] defined a pseudo-valuation on a Hilbert algebra, and proved that every pseudo-valuation induces a pseudo metric on a Hilbert algebra. Also, Buşneag [3] provided several theorems on extensions of pseudo-valuations. Buşneag [1] introduced the notions of pseudo-valuations (valuations) on residuated lattices, and proved some theorems of extension for these (using the model of Hilbert algebras ([3])).

In this paper, using the Buşneag's model, we introduce the notion of (BCK, BCC, strong BCC)-pseudovaluations (valuations) on BCC-algebras, and we induce a pseudo-metric by using a BCK-pseudo-valuation on BCC-algebras. We provide conditions for a real-valued function on a BCC-algebra X to be a BCK-pseudo-pseudo-valuation on X. Based on the notion of (pseudo) valuation, we show that the binary operation $*$ in BCC-algebras is uniformly continuous.

[^0]
2. Preliminaries

Recall that a BCC-algebra is an algebra $(X, *, 0)$ of type $(2,0)$ satisfying the following axioms:
(C1) $((x * y) *(z * y)) *(x * z)=0$,
(C2) $0 * x=0$,
(C3) $x * 0=x$,
(C4) $x * y=0$ and $y * x=0$ imply $x=y$
for every $x, y, z \in X$. For any BCC-algebra X, the relation \leq defined by $x \leq y$ if and only if $x * y=0$ is a partial order on X. In a BCC-algebra X, the following holds:
(a1) $(\forall x \in X)(x * x=0)$,
(a2) $(\forall x, y \in X)(x * y \leq x)$,
(a3) $(\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x)$.
A subset I of a BCC-algebra X is called a $B C K$-ideal if it satisfies:
(i) $0 \in I$,
(ii) $(\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in I)$.

A subset I of a BCC-algebra X is called a BCC-ideal if it satisfies:
(i) $0 \in I$,
(ii) $(\forall x, z \in X)(\forall y \in I)((x * y) * z \in I \Rightarrow x * z \in I)$.

3. Pseudo-valuations on BCC-algebras

Definition 3.1. A real-valued function φ on a BCC-algebra X is called a weak pseudo-valuation on X if it satisfies the following condition:

$$
\begin{equation*}
(\forall x, y \in X)(\varphi(x * y) \leq \varphi(x)+\varphi(y)) . \tag{1}
\end{equation*}
$$

Definition 3.2. A real-valued function φ on a BCC-algebra X is called a BCK-pseudo-valuation on X if it satisfies the following condition:

$$
\begin{align*}
& \varphi(0)=0 \tag{2}\\
& (\forall x, y \in X)(\varphi(x * y) \geq \varphi(x)-\varphi(y)) . \tag{3}
\end{align*}
$$

Example 3.3. Let $X:=\{0,1,2,3,4\}$ be a BCC-algebra ([7]), which is not a BCK-algebra, with *-operation given by Table 1 . Let φ be a real-valued function on X defined by

$$
\varphi=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 3 & 4 & 5
\end{array}\right) .
$$

It is easy to check that φ is both a weak pseudo-valuation and a BCK-pseudo-valuation on X.
Proposition 3.4. For a weak pseudo-valuation φ on a BCC-algebra X, we have

$$
\begin{equation*}
(\forall x \in X)(\varphi(x) \geq 0) . \tag{4}
\end{equation*}
$$

Proof. For any $x \in X$, we have $\varphi(0)=\varphi(0 * x) \leq \varphi(0)+\varphi(x)$, and so $\varphi(x) \geq 0$.

Table 1: *-operation

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3	3	1	0	0
4	4	3	4	3	0

Theorem 3.5. Let S be a subalgebra of a BCC-algebra X. For any real numbers t_{1} and t_{2} with $0 \leq t_{1}<t_{2}$, let φ_{S} be a real-valued function on X defined by

$$
\varphi_{S}(x)= \begin{cases}t_{1} & \text { if } x \in S \\ t_{2} & \text { if } x \notin S\end{cases}
$$

for all $x \in X$. Then φ_{S} is a weak pseudo-valuation on X.
Proof. Straightforward.
Given an element a of a BCC-algebra X, the set $A(a):=\{x \in X \mid x \leq a\}$ is called the initial section of X determined by a.

Corollary 3.6. Let X be a BCC-algebra. For any $a \in X$, let φ be a real-valued function on X defined by

$$
\varphi_{a}(x)= \begin{cases}t_{1} & \text { if } x \in A(a), \\ t_{2} & \text { if } x \notin A(a)\end{cases}
$$

for all $x \in X$ where t_{1} and t_{2} are real numbers with $t_{2}>t_{1} \geq 0$ and $A(a)$ is the initial section of X determined by a. Then φ_{a} is a weak pseudo-valuation on X.
Theorem 3.7. In a BCC-algebra, every BCK-pseudo-valuation is a weak pseudo-valuation.
Proof. Let φ be a BCK-pseudo valuation on a BCC-algebra X. Using (a2) and (C2), we have $((x * y) * x) * y=$ $0 * y=0$ for all $x, y \in X$. Hence

$$
\begin{aligned}
0 & =\varphi(0)=\varphi(((x * y) * x) * y) \\
& \geq \varphi((x * y) * x)-\varphi(y) \\
& \geq \varphi(x * y)-\varphi(x)-\varphi(y)
\end{aligned}
$$

and so $\varphi(x * y) \leq \varphi(x)+\varphi(y)$ for all $x, y \in X$. Therefore φ is a weak pseudo-valuation on X.
The following example shows that the converse of Theorem 3.7 is not true.
Example 3.8. Consider the BCC-algebra X which is given in Example 3.3. Let θ be a real-valued function on X defined by

$$
\theta=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 5
\end{array}\right)
$$

It is easy to show that θ is a weak pseudo-valuation, but not a BCK-pseudo-valuation on X since

$$
\theta(3)=4 \not \leq 3=1+2=\theta(1)+\theta(2)=\theta(3 * 2)+\theta(2) .
$$

Definition 3.9. A real-valued function φ on a BCC-algebra X is called a BCC-pseudo-valuation on X if it satisfies (2) and

$$
\begin{equation*}
(\forall x, y, z \in X)(\varphi((x * y) * z) \geq \varphi(x * z)-\varphi(y)) . \tag{5}
\end{equation*}
$$

Example 3.10. Consider the set $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ where \mathbb{N} is the set of natural numbers. Define a binary operation $*$ on \mathbb{N}_{0} by

$$
\left(\forall x, y \in \mathbb{N}_{0}\right)\left(x * y:=\left\{\begin{array}{ll}
0 & \text { if } x \leq y \\
x-y & \text { if } x>y
\end{array}\right) .\right.
$$

Then $\left(\mathbb{N}_{0} ; *, 0\right)$ is a BCK-algebra with the unique small atom 1 , and so it is a BCC-algebra. Define

$$
\varphi: \mathbb{N}_{0} \rightarrow \mathbb{R}, x \mapsto \begin{cases}0 & \text { if } x=0 \\ 2 x+1 & \text { otherwise }\end{cases}
$$

It is routine to verify that φ is a BCC-pseudo-valuation on \mathbb{N}_{0}.
Putting $z=0$ in (5) and using (C3), we get $\varphi(x * y) \geq \varphi(x)-\varphi(y)$ for all $x, y \in X$. Thus we know that every BCC-pseudo-valuation is a BCK-pseudo-valuation. We will state this as a theorem.

Theorem 3.11. In a BCC-algebra, every BCC-pseudo-valuation is a BCK-pseudo-valuation.
The converse of Theorem 3.11 is not true as seen in the following example.
Example 3.12. Consider the BCC-algebra X which is given in Example 3.3. Let φ be as in Example 3.3. Then φ is a BCK-pseudo-valuation, but not a BCC-pseudo-valuation on X since

$$
\varphi((4 * 1) * 2)=\varphi(1)=1 \nsupseteq 4=\varphi(4 * 2)-\varphi(1) .
$$

Theorem 3.13. In a BCK-algebra, every BCK-pseudo-valuation is a BCC-pseudo-valuation.
Proof. Let φ be a BCK-pseudo-valuation on a BCK-algebra X and let $x, y, z \in X$. Then

$$
\varphi(x * z) \leq \varphi((x * z) * y)+\varphi(y)=\varphi((x * y) * z)+\varphi(y)
$$

and so φ is a BCC-pseudo-valuation on X.
Lemma 3.14. Let φ be a BCC-pseudo-valuation on a BCC-algebra X. If $x \leq y$ then $\varphi(x) \leq \varphi(y)$ for all $x, y \in X$.
Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0$, and so

$$
\begin{aligned}
\varphi(x) & =\varphi(x * 0) \leq \varphi((x * y) * 0)+\varphi(y) \\
& =\varphi(x * y)+\varphi(y)=\varphi(0)+\varphi(y)=\varphi(y) .
\end{aligned}
$$

This completes the proof.
Lemma 3.15. Every BCC-pseudo-valuation on a BCC-algebra X is a weak pseudo-valuation on X.
Proof. It is clear.
Corollary 3.16. Every BCC-pseudo-valuation on a BCC-algebra X satisfies the following assertions: for all $x, y, z \in$ X,
(a) $\varphi(x * y) \leq \varphi(x)$,
(b) $\varphi(x *(y * z)) \leq \varphi(x)+\varphi(y)+\varphi(z)$,
(c) $\varphi((x * y) *(z * y)) \leq \varphi(x * z)$,
(d) $x \leq y \Rightarrow \varphi(x * z) \leq \varphi(y * z), \varphi(z * y) \leq \varphi(z * x)$.

The following example shows that the converse of Lemma 3.15 is not true.
Example 3.17. Consider the BCC-algebra X which is given in Example 3.3. Let φ be a real-valued function on X defined by

$$
\varphi=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 3
\end{array}\right)
$$

It is easy to check that φ is a weak pseudo-valuation, but not a BCK-pseudo-valuation since $\varphi(0) \neq 0$. Also it is not a BCC-pseudo-valuation since

$$
\varphi((4 * 1) * 2) \nsupseteq \varphi(4 * 2)-\varphi(1) .
$$

Proposition 3.18. Every BCC-pseudo-valuation on a BCC-algebra X satisfies the following implication:

$$
\begin{equation*}
(\forall x, y, z, a \in X)((x * y) * z \leq a \Rightarrow \varphi(x * z) \leq \varphi(y)+\varphi(a)) \tag{6}
\end{equation*}
$$

Proof. Let $x, y, z, a \in X$ be such that $(x * y) * z \leq a$. It follows from Lemma 3.14 that $\varphi((x * y) * z) \leq \varphi(a)$ so from (5) that

$$
\varphi(x * z) \leq \varphi((x * y) * z)+\varphi(y) \leq \varphi(a)+\varphi(y)
$$

This completes the proof.
We provide a condition for a real-valued function φ on a BCC-algebra X to be a BCC-pseudo-valuation on X.

Theorem 3.19. Let φ be a real-valued function on a BCC-algebra X. If φ satisfies conditions (2) and (6), then φ is a BCC-pseudo-valuation on X.

Proof. Assume that φ satisfies conditions (2) and (6). We note that $(x * y) * z \leq(x * y) * z$ for all $x, y, z \in X$, and so $\varphi(x * z) \leq \varphi((x * y) * z)+\varphi(y)$. Therefore φ is a BCC-pseudo-valuation on X.

Definition 3.20. A real-valued function φ on a BCC-algebra X is called a strong BCC-pseudo-valuation on X if it satisfies (2) and

$$
\begin{equation*}
(\forall x, y, z \in X)(\varphi((x * y) * z) \geq \varphi(x)-\varphi(y)) \tag{7}
\end{equation*}
$$

Lemma 3.21. Every strong BCC-pseudo-valuation φ on a BCC-algebra X is order preserving.
Proof. Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0$, and so

$$
\varphi(x) \leq \varphi((x * y) * 0)+\varphi(y)=\varphi(0 * 0)+\varphi(y)=\varphi(0)+\varphi(y)=\varphi(y)
$$

by (7), (2) and (a1). Hence φ is order preserving.
Theorem 3.22. Every strong BCC-pseudo-valuation φ on a BCC-algebra X is a BCC-pseudo-valuation on X.
Proof. By (a2) and Lemma 3.21, we have $\varphi(x * z) \leq \varphi(x)$ for all $x, z \in X$. It follows from (7) that

$$
\begin{equation*}
\varphi((x * y) * z) \geq \varphi(x)-\varphi(y) \geq \varphi(x * z)-\varphi(y) \tag{8}
\end{equation*}
$$

Hence φ is a BCC-pseudo-valuation on X.
The following example shows that the converse of Theorem 3.22 may not be true.

Table 2: *-operation

$*$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

Example 3.23. Let $X:=\{0,1,2,3,4,5\}$ be a BCC-algebra ([7]), which is not a BCK-algebra, with *-operation given by Table 2. Let φ be a real-valued function on X defined by

$$
\varphi=\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 1 & 1 & 1 & 7
\end{array}\right)
$$

It is easy to check that φ is a BCC-pseudo-valuation on X, but not a strong BCC-pseudo-valuation on X, since $\varphi((1 * 0) * 1)=0 \nsupseteq 1=1-0=\varphi(1)-\varphi(0)$.

Definition 3.24 ([6]). A non-zero element a of a BCC-algebra X is called an atom of X if for any $x \in X, x \leq a$ implies $x=0$ or $x=a$.

Lemma 3.25 ([6]). Let a and b be atoms of a BCC-algebra X. If $a \neq b$, then $a * b=a$.
We provide a condition for a BCC-pseudo-valuation to be a strong BCC-pseudo-valuation.
Theorem 3.26. In a BCC-algebra containing only atoms, every BCC-pseudo-valuation is a strong BCC-pseudovaluation.

Proof. Let X be a BCC-algebra containing only atoms and let φ be a BCC-pseudo-valuation on X. Using Lemma 3.25 and (5), we have

$$
\varphi(x)=\varphi(x * z) \leq \varphi((x * y) * z)+\varphi(y)
$$

for all $x, y, z \in X$. Hence φ is a strong BCC-pseudo-valuation on X.
Proposition 3.27. For any BCK-pseudo-valuation φ on a BCC-algebra X, we have the following assertions:
(a) φ is order preserving,
(b) $(\forall x, y \in X)(\varphi(x * y)+\varphi(y * x) \geq 0)$,
(c) $(\forall x, y, z \in X)(\varphi(x * y) \leq \varphi(x * z)+\varphi(z * y))$.

Proof. (a) Let $x, y \in X$ be such that $x \leq y$. Then $x * y=0$, and so $\varphi(x) \leq \varphi(x * y)+\varphi(y)=\varphi(0)+\varphi(y)=\varphi(y)$.
(b) Let $x, y \in X$. Using (3), we have $\varphi(x * y) \geq \varphi(x)-\varphi(y)$ and $\varphi(y * x) \geq \varphi(y)-\varphi(x)$. It follows that $\varphi(x * y)+\varphi(y * x) \geq 0$.
(c) Let $x, y, z \in X$. Since φ is order preserving, it follows from (C1) and (3) that

$$
\varphi(x * z) \geq \varphi((x * y) *(z * y)) \geq \varphi(x * y)-\varphi(z * y) .
$$

Hence (c) is valid.

Corollary 3.28. Every BCC-pseudo-valuation φ on a BCC-algebra X satisfies conditions (a), (b) and (c) in Proposition 3.27.

Theorem 3.29. If a real-valued function φ on a BCC-algebra X satisfies the condition (2) and

$$
\begin{equation*}
(\forall x, y, z \in X)(\varphi(((x * y) * y) * z) \geq \varphi(x * y)-\varphi(z) \tag{9}
\end{equation*}
$$

then φ is a BCK-pseudo-valuation on X .
Proof. Taking $y=0$ in (9) and using (C3), we have

$$
\varphi(x * z)=\varphi(((x * 0) * 0) * z) \geq \varphi(x * 0)-\varphi(z)=\varphi(x)-\varphi(z) .
$$

Hence φ is a $B C K$-pseudo-valuation on X.
Corollary 3.30. Let φ be a real-valued function on a BCK-algebra X. If φ satisfies conditions (2) and (9), then φ is a BCC-pseudo-valuation on X.

By a pseudo-metric space we mean an ordered pair (M, d), where M is a non-empty set and $d: M \times M \rightarrow \mathbb{R}$ is a positive function satisfying the following properties: $d(x, x)=0, d(x, y)=d(y, x)$ and $d(x, z) \leq d(x, y)+d(y, z)$ for every $x, y, z \in M$. If in the pseudo-metric space (M, d) the implication $d(x, y)=0 \Rightarrow x=y$ hold, then (M, d) is called a metric space. For a real-valued function φ on a BCC-algebra X, define a mapping $d_{\varphi}: X \times X \rightarrow \mathbb{R}$ by $d_{\varphi}(x, y)=\varphi(x * y)+\varphi(y * x)$ for all $(x, y) \in X \times X$.

Theorem 3.31. If a real-valued function φ on a BCC-algebra X is a BCK-pseudo-valuation on X, then $\left(X, d_{\varphi}\right)$ is a pseudo-metric space.

We say d_{φ} is the pseudo-metric induced by a BCK-pseudo-valuation φ on a BCC-algebra X.
Proof. Obviously, $d_{\varphi}(x, y) \geq 0, d_{\varphi}(x, x)=0$ and $d_{\varphi}(x, y)=d_{\varphi}(y, x)$ for all $x, y \in X$. Let $x, y, z \in X$. Using Proposition 3.27(c), we have

$$
\begin{aligned}
d_{\varphi}(x, y)+d_{\varphi}(y, z) & =[\varphi(x * y)+\varphi(y * x)]+[\varphi(y * z)+\varphi(z * y)] \\
& =[\varphi(x * y)+\varphi(y * z)]+[\varphi(z * y)+\varphi(y * x)] \\
& \geq \varphi(x * z)+\varphi(z * x)=d_{\varphi}(x, z) .
\end{aligned}
$$

Therefore $\left(X, d_{\varphi}\right)$ is a pseudo-metric space.
The following example illustrates Theorem 3.31.
Example 3.32. Consider the BCC-pseudo-valuation φ on \mathbb{N}_{0} which is described in Example 3.10. Using Theorem 3.11, we know that φ is a BCK-pseudo-valuation on \mathbb{N}_{0}. The pseudo-metric d_{φ} induced by φ is given as follows:

$$
d_{\varphi}(x, y)= \begin{cases}0 & \text { if } x=y, \\
2 y+1 & \text { if } x=0 \text { and } y \neq 0, \\
2 x+1 & \text { if } x \neq 0 \text { and } y=0, \\
2(y * x)+1 & \text { if }\left\{\begin{array}{l}
x * y=0 \\
y * x \neq 0 \\
x * y \neq 0 \\
y * x=0
\end{array} \text { for } 0 \neq x \neq y \neq 0,\right. \\
2(x * y)+1 \\
2(x * y)+2(y * x)+2 & \text { if }\left\{\begin{array}{l}
\text { if } 0 \neq x \neq y \neq 0, \\
y * x \neq 0
\end{array} \text { for } 0 \neq x \neq y \neq 0,\right.\end{cases}
$$

and $\left(\mathbb{N}_{0}, d_{\varphi}\right)$ is a pseudo-metric space.

Proposition 3.33. Let φ be a BCK-pseudo-valuation on a BCC-algebra X. Then every pseudo-metric d_{φ} induced by φ satisfies the following inequalities:
(a) $d_{\varphi}(x, y) \geq \max \left\{d_{\varphi}(x * a, y * a), d_{\varphi}(a * x, a * y)\right\}$,
(b) $d_{\varphi}(x * y, a * b) \leq d_{\varphi}(x * y, a * y)+d_{\varphi}(a * y, a * b)$
for all $x, y, a, b \in X$.
Proof. (a) Let $x, y, a \in X$. Since

$$
((y * a) *(x * a)) *(y * x)=0 \text { and }((x * a) *(y * a)) *(x * y)=0 \text {, }
$$

it follows from Proposition 3.27(a) that $\varphi(y * x) \geq \varphi((y * a) *(x * a))$ and $\varphi(x * y) \geq \varphi((x * a) *(y * a))$ so that

$$
\begin{aligned}
d_{\varphi}(x, y) & =\varphi(x * y)+\varphi(y * x) \\
& \geq \varphi((x * a) *(y * a))+\varphi((y * a) *(x * a)) \\
& =d_{\varphi}(x * a, y * a)
\end{aligned}
$$

Similarly, we have $d_{\varphi}(x, y) \geq d_{\varphi}(a * x, a * y)$. Hence (a) is valid.
(b) Using Proposition 3.27(c), we have

$$
\begin{aligned}
& \varphi((x * y) *(a * b)) \leq \varphi((x * y) *(a * y))+\varphi((a * y) *(a * b)), \\
& \varphi((a * b) *(x * y)) \leq \varphi((a * b) *(a * y))+\varphi((a * y) *(x * y))
\end{aligned}
$$

for all $x, y, a, b \in X$. Hence

$$
\begin{aligned}
d_{\varphi}(x * y, a * b)= & \varphi((x * y) *(a * b))+\varphi((a * b) *(x * y)) \\
\leq & {[\varphi((x * y) *(a * y))+\varphi((a * y) *(a * b))] } \\
& +[\varphi((a * b) *(a * y))+\varphi((a * y) *(x * y))] \\
= & {[\varphi((x * y) *(a * y))+\varphi((a * y) *(x * y))] } \\
& +[\varphi((a * b) *(a * y))+\varphi((a * y) *(a * b))] \\
= & d_{\varphi}(x * y, a * y)+d_{\varphi}(a * y, a * b)
\end{aligned}
$$

for all $x, y, a, b \in X$.
Theorem 3.34. For a real-valued function φ on a BCC-algebra X, if d_{φ} is a pseudo-metric on X, then $\left(X \times X, d_{\varphi}^{*}\right)$ is a pseudo-metric space, where

$$
\begin{equation*}
d_{\varphi}^{*}((x, y),(a, b))=\max \left\{d_{\varphi}(x, a), d_{\varphi}(y, b)\right\} \tag{10}
\end{equation*}
$$

for all $(x, y),(a, b) \in X \times X$.
Proof. Suppose d_{φ} is a pseudo-metric on X. For any $(x, y),(a, b) \in X \times X$, we have

$$
d_{\varphi}^{*}((x, y),(x, y))=\max \left\{d_{\varphi}(x, x), d_{\varphi}(y, y)\right\}=0
$$

and

$$
\begin{aligned}
d_{\varphi}^{*}((x, y),(a, b)) & =\max \left\{d_{\varphi}(x, a), d_{\varphi}(y, b)\right\} \\
& =\max \left\{d_{\varphi}(a, x), d_{\varphi}(b, y)\right\} \\
& =d_{\varphi}^{*}((a, b),(x, y))
\end{aligned}
$$

Now let $(x, y),(a, b),(u, v) \in X \times X$. Then

$$
\begin{aligned}
& d_{\varphi}^{*}((x, y),(u, v))+d_{\varphi}^{*}((u, v),(a, b)) \\
& =\max \left\{d_{\varphi}(x, u), d_{\varphi}(y, v)\right\}+\max \left\{d_{\varphi}(u, a), d_{\varphi}(v, b)\right\} \\
& \geq \max \left\{d_{\varphi}(x, u)+d_{\varphi}(u, a), d_{\varphi}(y, v)+d_{\varphi}(v, b)\right\} \\
& \geq \max \left\{d_{\varphi}(x, a), d_{\varphi}(y, b)\right\} \\
& =d_{\varphi}^{*}((x, y),(a, b))
\end{aligned}
$$

Therefore $\left(X \times X, d_{\varphi}^{*}\right)$ is a pseudo-metric space.
Corollary 3.35. If $\varphi: X \rightarrow \mathbb{R}$ is a BCK-pseudo-valuation on a BCC-algebra X, then $\left(X \times X, d_{\varphi}^{*}\right)$ is a pseudo-metric space.

A BCK/BCC-pseudo-valuation φ on a BCC-algebra X satisfying the following condition:

$$
\begin{equation*}
(\forall x \in X)(x \neq 0 \Rightarrow \varphi(x) \neq 0) \tag{11}
\end{equation*}
$$

is called a $B C K / B C C$-valuation on X.
Theorem 3.36. If $\varphi: X \rightarrow \mathbb{R}$ is a BCK-valuation on a BCC-algebra X, then $\left(X, d_{\varphi}\right)$ is a metric space.
Proof. Suppose φ is a BCK-valuation on a BCC-algebra X. Then $\left(X, d_{\varphi}\right)$ is a pseudo-metric space by Theorem 3.31. Let $x, y \in X$ be such that $d_{\varphi}(x, y)=0$. Then $0=d_{\varphi}(x, y)=\varphi(x * y)+\varphi(y * x)$, and so $\varphi(x * y)=0$ and $\varphi(y * x)=0$. It follows from (11) that $x * y=0$ and $y * x=0$ so from (C4) that $x=y$. Therefore $\left(X, d_{\varphi}\right)$ is a metric space.

Theorem 3.37. If $\varphi: X \rightarrow \mathbb{R}$ is a $B C K$-valuation on a $B C C$-algebra X, then $\left(X \times X, d_{\varphi}^{*}\right)$ is a metric space.
Proof. Note from Corollary 3.35 that $\left(X \times X, d_{\varphi}^{*}\right)$ is a pseudo-metric space. Let $(x, y),(a, b) \in X \times X$ be such that $d_{\varphi}^{*}((x, y),(a, b))=0$. Then

$$
0=d_{\varphi}^{*}((x, y),(a, b))=\max \left\{d_{\varphi}(x, a), d_{\varphi}(y, b)\right\}
$$

and so $d_{\varphi}(x, a)=0=d_{\varphi}(y, b)$ since $d_{\varphi}(x, y) \geq 0$ for all $(x, y) \in X \times X$. Hence

$$
0=d_{\varphi}(x, a)=\varphi(x * a)+\varphi(a * x)
$$

and

$$
0=d_{\varphi}(y, b)=\varphi(y * b)+\varphi(b * y)
$$

It follows that $\varphi(x * a)=0=\varphi(a * x)$ and $\varphi(y * b)=0=\varphi(b * y)$ so that $x * a=0=a * x$ and $y * b=0=b * y$. Using (C4), we have $a=x$ and $b=y$, and so $(x, y)=(a, b)$. Therefore $\left(X \times X, d_{\varphi}^{*}\right)$ is a metric space.

Theorem 3.38. If $\varphi: X \rightarrow \mathbb{R}$ is a BCK-valuation on a BCC-algebra X, then the operation * in the $B C C$-algebra X is uniformly continuous.

Proof. For any $\varepsilon>0$, if $d_{\varphi}^{*}((x, y),(a, b))<\frac{\varepsilon}{2}$, then $d_{\varphi}(x, a)<\frac{\varepsilon}{2}$ and $d_{\varphi}(y, b)<\frac{\varepsilon}{2}$. Using Proposition 3.33, we have

$$
\begin{aligned}
d_{\varphi}(x * y, y * a) & \leq d_{\varphi}\left((x, y),(a * y)+d_{\varphi}(a * y, a * b)\right. \\
& \leq d_{\varphi}(x, a)+d_{\varphi}(y, b)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Therefore the operation $*: X \times X \rightarrow X$ is uniformly continuous.

Table 3: *-operation

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	a	0	0
c	c	b	b	0

The following example illustrates Theorem 3.38.
Example 3.39. Let $X=\{0, a, b, c\}$ be a set with the $*$-operation given by Table 3. Then $(X, *, 0)$ is a proper BCC-algebra. Let φ be a real-valued function on X defined by

$$
\varphi=\left(\begin{array}{llll}
0 & a & b & c \\
0 & 3 & 4 & 5
\end{array}\right)
$$

Then φ is a BCK-valuation on X and $\left(X, d_{\varphi}\right)$ is a metric space where

$$
d_{\varphi}=\left(\begin{array}{cccccccccc}
(0,0) & (0, a) & (0, b) & (0, c) & (a, a) & (a, b) & (a, c) & (b, b) & (b, c) & (c, c) \\
0 & 3 & 4 & 5 & 0 & 3 & 4 & 0 & 4 & 0
\end{array}\right) .
$$

Also, $\left(X \times X, d_{\varphi}^{*}\right)$ is a metric space where d_{φ}^{*} is obtained by (10), for example,

$$
\begin{aligned}
& d_{\varphi}^{*}((0, b),(a, c))=\max \left\{d_{\varphi}(0, a), d_{\varphi}(b, c)\right\}=\max \{3,4\}=4, \\
& d_{\varphi}^{*}((a, b),(c, a))=\max \left\{d_{\varphi}(a, c), d_{\varphi}(b, a)\right\}=\max \{4,3\}=4, \\
& d_{\varphi}^{*}((c, a),(0,0))=\max \left\{d_{\varphi}(c, 0), d_{\varphi}(a, 0)\right\}=\max \{5,3\}=5, \\
& d_{\varphi}^{*}((a, c),(b, 0))=\max \left\{d_{\varphi}(a, b), d_{\varphi}(c, 0)\right\}=\max \{3,5\}=5, \\
& d_{\varphi}^{*}((a, c),(b, c))=\max \left\{d_{\varphi}(a, b), d_{\varphi}(c, c)\right\}=\max \{3,0\}=3,
\end{aligned}
$$

and so on. Now, it is routine to verify that the operation * in the BCC-algebra X

$$
*: X \times X \rightarrow X,(x, y) \mapsto x * y
$$

is uniformly continuous.

4. Acknowledgements

The authors wish to thank the anonymous reviewers for their valuable suggestions.

References

[1] C. Buşneag, Valuations on residuated lattices, An. Univ. Craiova Ser. Mat. Inform. 34 (2007) 21-28.
[2] D. Buşneag, Hilbert algebras with valuations, Discrete Math. 263 (2003) 11-24.
[3] D. Buşneag, On extensions of pseudo-valuations on Hilbert algebras, Discrete Math. 263 (2003) 11-24.
[4] W. A. Dudek, The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992) 129-136.
[5] W. A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992) 137-150.
[6] W. A. Dudek, X. H. Zhang, On atoms in BCC-algebras, Discussiones Mathematica-Algebra and Stochastic Methods 15 (1995) 81-85.
[7] W. A. Dudek, X. H. Zhang, On ideals and congruences in BCC-algebras, Czech. Math. J. 48 (123)(1998) 21-29.
[8] Y. Imai, K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Academy 42 (1966) 19-22.
[9] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978) 1-26.
[10] Y. Komori, The class of BCC-algebras in not a variety, Math. Japon. 29(1984) 391-394.
[11] J. Meng, Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul, 1994.
[12] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983) 211-213.

[^0]: 2010 Mathematics Subject Classification. Primary 06F35; Secondary 03G25, 03C05
 Keywords. Weak pseudo-valuation, (BCK, BCC, strong BCC)-pseudo-valuation, pseudo-metric induced by BCK-pseudo-valuation, BCK/BCC-valuation

 Received: 21 June 2011; Accepted: 11 August 2011
 Communicated by Miroslav Ćirić
 *Corresponding author.
 Email addresses: skywine@gmail.com (Young Bae Jun), sunshine@dongguk. edu (Sun Shin Ahn), idealmath@gmail.com (Eun Hwan Roh)

