
Filomat 26:2 (2012), 83–97
DOI (will be added later)

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, a non-local boundary value problem method for solving 2-D nonlinear heat
equation backward in time is given. Some error estimates between the exact solution and its regularization
approximation are provided and numerical examples show that the method works effectively.

1. Introduction

Let T be a positive number. We consider the problem of finding the tempereture
u(x, y, t), (x, y, t) ∈ I × [0,T] such that

ut − ∆u = f (x, y, t,u(x, y, t)) (x, y, t) ∈ I × (0,T), I = (0, π) × (0, π) (1)
u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0 t ∈ [0,T] (2)
u(x, y,T) = ϕ(x, y) x, y ∈ I. (3)

where ϕ(x, y), f (x, y, t, z)) are given. This is a typical example of the inverse and ill-posed problem and for
its applications we refer to various excellent literature, e.g. Latt‘es-Lions [10] and Tikhonov-Arsenin [16].

As is known, the problem is severely ill-posed, i.e., solutions do not always exist, and in the case of
existence, these do not depend continuously on the given data. In fact, from small noise contaminated
physical measurements, the corresponding solutions have large errors. It makes difficult to numerical
calculations. Hence, a regularization is in order. The linear case was studied extensively in the last four
decades by many methods. The literature related to the problem is impressive (see, e.g. [1, 2, 4, 10] and the
references therein). In [2], the stochastic methods was used to regularize the problem of finding u

u′(t) = −Au(t), t ∈ [0,T],
u(0) = u0,
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where A generates an analytic C0-semigroup. In the pioneering work [10] in 1967, Lattes and Lion present,
in a heuristic way, the quasi-reversibility method. They approximates the problem by adding a ”corrector”
into the main equation. In fact, they considered the problem

ut + Au − εA∗Au = 0, t ∈ [0,T],
u(T) = ϕ.

The stability magnitude of the method are of order ecε−1
. In [1], the problem was approximated with

ut + Au + εAut = 0, t ∈ [0,T],
u(T) = ϕ.

The method is useful if we cannot construct clearly the operator A∗. However, the stability order in the
case are quite large as in the original quasi-reversibility methods. In [13], using the method, so-called, of
stabilized quasi reversibility, K. Miller approximated the problem with

ut + f (A)u = 0, t ∈ [0,T],
u(T) = ϕ.

He shown that, with appropriate conditions on the ”corrector” f (A), the stability magnitude of the
method is of order cε−1.

Sixteen years after the pioneering work by Lattes-Lions, in 1983, Showalter [15]presented the quasi-
boundary method or non-local boundary value method. He considered the problem

ut − Au(t) = Bu(t), t ∈ [0,T],
u(0) = ϕ,

and approximated the problem with

ut − Au(t) = Bu(t), t ∈ [0,T],
u(0) + εu(T) = ϕ.

where B is a adjoint operator. In his opinion, this method gave a better stability estimate than the other
discussed methods. Clark and Oppenheimer, in their paper [4], used the non-local boundary value method
to regularize the backward problem with

ut + Au(t) = 0, t ∈ [0,T],
u(T) + εu(0) = ϕ.

The authors shown that the stability estimate of the method is of order ε−1. Recently, this method has
been used effectively in solving the homogeneous parabolic equation backward in time (See [7–9]).

Although there are many papers on the linear homogeneous case of the backward problem, but we
only find a few papers on the nonhomogeneous case, and especially, the 2-D nonlinear case of their is
very scarce. For the 2-D homogeneous case, we refer the reader to the results in [3, 12]. Very recently,
a linear nonhomogeneous case f (x, y, t,u(x, y, t)) = f (x, y, t) of the problem (1)-(3) has been considered by
QBV method [17] and truncation method [18].

In the present paper, we extend the results in [7–9, 17, 18] to the nonlinear case. The 1-D nonlinear case
of the problem (1)-(3) is studied in [18]. We shall use the non-local boundary value method to regularize
the nonlinear problem. We approximate the problem (1)-(3) by the following problem:

uεt − ∆uε =

∞∑

n,m=1

e−t(n2+m2)

εt/T + e−t(n2+m2)
fnm(uε)(t) sin nx sin my (x, y, t) ∈ I × (0,T) (4)

uε(0, y, t) = uε(π, y, t) = uε(x, 0, t) = uε(x, π, t) = 0 (x, y, t) ∈ I × [0,T] (5)
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uε(x, y,T) + εuε(x, y, 0) = ϕ(x, y) −

−
∞∑

n,m=1

(∫ T

0

ε

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

)
sin nx sin my (x, y) ∈ I

(6)

where 0 < ε < 1, fnm(u)(t) = 4
π2 < f (x, y, t,u(x, y, t)), sin nx sin my >,< ., . > is inner product in L2(I). We note

the reader that if f = 0, then the problem (4)-(6) has been considered in [4] under the same form. Moreover,
this problem is different as compared to the problem (7)-(9) in [17] (See p.874).

The paper is organized as follows. First we shall show that (4)-(6) is well posed and has a unique
solution uε. Then we also estimate error between a exact solution u of Problem (1)-(3) and approximation
solution uε. Finally, a numerical experiment is given.

2. The well-posedness of regularized problem

Through out this paper, we denote ‖.‖ be the norm in L2(I). In the section, we shall study the existence,
the uniqueness and the stability of a solution of Problem (4)-(6). In fact, one has

Theorem 1
Let ϕ ∈ L2(I) and let f ∈ L∞([0, π] × [0, π] × [0,T] × R) satisfy

| f (x, y, t,w) − f (x, t, y,u)| ≤ k|w − u|

for a k > 0 independent of x, y, t,w,u.
Then Problem (4)-(6) has a unique solution uε ∈ C([0,T]; H1

0(I))∩C1((0,T); L2(I)) satisfying the following integral
equation

uε(x, y, t)

=

∞∑

n,m=1


e−t(n2+m2)

ε + e−T(n2+m2)
ϕnm −

T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

 sin nx sin my

(7)

where

ϕnm =
4
π2 < ϕ(x, y), sin nx sin my > .

The solution also depends continuously on ϕ.
Proof
The proof is divided into three steps. In Step 1, we shall prove that Problem (4)-(6) is equivalence to

problem (7). In Step 2, we prove the existence and the uniqueness of a solution of (7). Finally in Step 3, the
stability of the solution is given.

Step 1. Prove that (4)-(6) is equivalence (7)
We divide this Step into two parts.
Part A If uε satisfies (7) then uε is the solution of (4)-(6).
We have:

uε(x, y, t) =

=

∞∑

n,m=1


e−t(n2+m2)

ε + e−T(n2+m2)
ϕnm −

T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

 .

. sin nx sin my 0 ≤ t ≤ T. (8)
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This implies that

uεt (x, y, t) =

∞∑

n,m=1


−(n2 + m2)e−t(n2+m2)

ε + e−T(n2+m2)
ϕnm −

T∫

t

−(n2 + m2)e−t(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

+
e−t(n2+m2)

εt/T + e−t(n2+m2)
fnm(uε)(t)

)
sin nx sin my

= ∆uε +

∞∑

n,m=1

e−t(n2+m2)

εt/T + e−t(n2+m2)
fnm(uε)(t) sin nx sin my (9)

and

εuε(x, y, 0) + uε(x, y,T)

=


∞∑

n,m=1

ε


1

ε + e−T(n2+m2)
ϕnm −

T∫

0

1
εs/T + e−s(n2+m2)

fnm(uε)(s)

 ds

+

∞∑

n,m=1

e−T(n2+m2)

ε + e−T(n2+m2)
ϕnm

 sin nx sin my

= ϕ(x, y) −
∞∑

n,m=1



T∫

0

ε

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

 sin nx sin my. (10)

So uε is the solution of (4)−(6).
Part B If uε satisfies (4)−(6) then uε is the solution of (7).
Infact, taking the inner product the equation (4) with respect to sin nx sin my we get in view of (4)

d
dt

uεnm(t) + (n2 + m2)uεnm(t) =
e−t(n2+m2)

εt/T + e−t(n2+m2)
fnm(uε)(t) (11)

where we recall that

uεnm(t) =
4
π2 < uε(x, y, t), sin nx sin my >,

fnm(uε)(t) =
4
π2 < f (x, y, t,uε(x, y, t)), sin nx sin my > .

It follows that

uεnm(t) = e−t(n2+m2)uεnm(0)

+

t∫

0

e−(t−s)(n2+m2) e−s(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds (12)

Hence, we have the Fourier expansion
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uε(x, y, t) =

∞∑

n,m=1

(
e−t(n2+m2)uεnm(0)+

t∫

0

e−(t−s)(n2+m2) e−s(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

)
sin nx sin my

=

∞∑

n,m=1

(
e−t(n2+m2)uεnm(0)

+

t∫

0

e−t(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

)
sin nx sin my. (13)

Hence

uε(x, y,T) =

∞∑

n,m=1

(
e−T(n2+m2)uεnm(0)

+

T∫

0

e−T(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

)
sin nx sin my. (14)

This implies that
∞∑

n,m=1

((ε + e−T(n2+m2))uεnm(0)) sin nx sin my = ϕ(x, y) −

−
∞∑

n,m=1



T∫

0

ε + e−T(n2+m2)

εs/T + e−s(n2+m2)
fnm(uε)(s)ds

 sin nx sin my.

We obtain

uεnm(0) =
1

ε + e−T(n2+m2)
ϕnm −

T∫

0

1
εs/T + e−s(n2+m2)

fnm(uε)(s)ds ∀n,m. (15)

Replacing (15) in (13), we shall receive (7).
This completes the proof of Step 1.

Step 2. The existence and the uniqueness of solution of (7)
Put

G(u)(x, y, t) = Ψ(x, y, t) −
∞∑

n,m=1



T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
fnm(u)(s)ds

 sin nx sin my

where Ψ(x, y, t) =
∞∑

n,m=1

e−t(n2+m2)

ε+e−T(n2+m2)ϕnm sin nx sin my.

We claim that

‖Gp(u)(., ., t) − Gp(v)(., ., t)‖2 ≤
(

k
ε

)2p (T − t)pCp

p!
|||u − v|||2 (16)

for every p ≥ 1, and Gp(u) = G(G...G(u)) for p times, C = max{T, 1} and |||.||| is sup norm in C([0,T]; L2(I)).
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We shall prove the latter inequality by induction.
For p = 1, we have

‖G(u)(., ., t) − G(v)(., ., t)‖2 =
π2

4

∞∑

n,m=1



T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
( fnm(u)(s) − fnm(v)(s))ds



2

≤ π2

4

∞∑

n,m=1

T∫

t

(
e−t(n2+m2)

εs/T + e−s(n2+m2)

)2

ds

T∫

t

( fnm(u)(s) − fnm(v)(s))2ds

≤ π2

4

∞∑

n,m=1

1
ε2 (T − t)

T∫

t

( fnm(u)(s) − fnm(v)(s))2ds =

=
1
ε2 (T − t)

T∫

t

∫

I

( f (x, y, s,u(x, y, s)) − f (x, y, s, v(x, y, s)))2dxdyds

≤ k2

ε2 (T − t)

T∫

t

∫

I

|u(x, y, s) − v(x, y, s)|2dxdyds

≤ C
k2

ε2 (T − t)|||u − v|||2.

Thus (16) holds. Suppose that (16) holds for p = j. We prove that (16) holds for p = j + 1. We have

‖G j+1(u)(., ., t) − G j+1(v)(., ., t)‖2 =

=
π2

4

∞∑

n,m=1



T∫

t

e−t(n2+m2)

εs/T + e−s(n2 + m2)

(
fnm(G j(u))(s) − fnm(G j(v))(s)

)
ds



2

≤ π2

4
1
ε2

∞∑

n,m=1



T∫

t

| fnm(G j(u))(s) − fnm(G j(v))(s)|ds



2

≤ π2

4
1
ε2 (T − t)

T∫

t

∞∑

n,m=1

| fnm(G j(u))(s) − fnm(G j(v))(s)|2ds

≤ 1
ε2 (T − t)k2

T∫

t

‖G j(u)(., ., s) − G j(v)(., ., s)‖2ds

≤ 1
ε2 (T − t)k2

(
k
ε

)2 j T∫

t

(T − s) j

j!
dsC j|||u − v|||2

≤
(

k
ε

)2( j+1) (T − t) j+1

( j + 1)!
C j+1|||u − v|||2.

Therefore

|||Gp(u) − Gp(v)||| ≤
(

k
ε

)p Tp/2

√
p!

Cp|||u − v|||

for all u, v ∈ C([0,T]; L2(I)).
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We consider G : C([0,T]; L2(I))→ C([0,T]; L2(I)).
Since lim

p→∞

(
k
ε

)p Tp/2Cp√
p!

= 0, there exists a positive integer number p0, such that Gp0 is a contraction.

It follows that the equation Gp0 (u) = u has a unique solution uε ∈ C([0,T]; L2(I)).
We claim that G(uε) = uε. In fact, one has

G(GP0 (uε)) = G(uε).

Hence

GP0 (G(uε)) = G(uε).

By the uniqueness of the fixed point of GP0 , one has G(uε) = uε, i.e., the equation G(u) = u has a unique
solution uε ∈ C([0,T]; L2(I)).

From Part A, we complete the proof of Step 2.
Step 3. The solution of the problem (4) − (6) depends continuously on ϕ in L2(I).
Let u and v be two solutions of (4) − (6) corresponding to the values ϕ and ω.
From (7) one has

‖u(., ., t) − v(., ., t)‖2

=
π2

4

∞∑

n,m=1

∣∣∣∣∣∣∣∣
e−t(n2+m2)

ε + e−T(n2+m2)
(ϕnm − ωnm) −

T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
( fnm(u)(s) − fnm(v)(s)ds)

∣∣∣∣∣∣∣∣

2

≤ π2

2

∞∑

n,m=1

(
e−t(n2+m2)

ε + e−T(n2+m2)
|ϕnm − ωnm|)2

+
π2

2

∞∑

n,m=1



T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
| fnm(u)(s) − fnm(v)(s)|ds



2

(17)

One has for s > t and α > 0

e−t(n2+m2)

α + e−s(n2+m2)
=

e−t(n2+m2)

(α + e−s(n2+m2))t/s(α + e−s(n2+m2))1−t/s

=
1

(αes(n2+m2) + 1)t/s(α + e−s(n2+m2))1−t/s

≤ αt/s−1.

Letting α = ε, s = T, we get

e−t(n2+m2)

ε + e−T(n2+m2)
≤ εt/T−1. (18)

Letting α = εs/T, we get

e−t(n2+m2)

εs/T + e−s(n2+m2)
≤ εt/T−s/T. (19)

Hence, from (19) it follows that

‖u(., ., t) − v(., ., t)‖2 ≤ 2ε2(t/T−1)‖ϕ − ω‖2

+ 2k2(T − t)ε2t/T
∫ T

t
ε−2s/T‖u(., ., s) − v(., ., s)‖2ds.
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Hence

ε−2t/T‖u(., ., t) − v(., ., t)‖2 ≤ ε−2‖ϕ − ω‖2

+ 2k2(T − t)
∫ T

t
ε−2s/T‖u(., ., s) − v(., ., s)‖2ds.

Using Gronwall’s inequality we have

‖u(., ., t) − v(., ., t)‖ ≤ 2εt/T−1 exp(k2(T − t)2)‖ϕ − ω‖.
This completes the proof of Step 3 and the proof of our theorem.

3. Regularization and error estimate.

We first have a uniqueness result
Theorem 2
Let ϕ, f be as in Theorem 1. If ∂ f

∂z (x, y, t, z) is bounded on I × (0,T) × R then Problem (1) − (3) has at most one
solution u ∈ C([0,T]; H1

0(I)) ∩ C1((0,T); L2(I)).

Proof
Let M > 0 be such that

|∂ f
∂z

(x, y, t, z)| ≤M

for all (x, y, t, z) ∈ I × (0,T) × R.
Let u1(x, y, t) and u2(x, y, t) be two solutions of Problem (1) − (3) such that u1,u2 ∈ C([0,T]; H1

0(I)) ∩
C1((0,T); L2(I)).

Put w(x, y, t) = u1(x, y, t) − u2(x, y, t).
Then w satisfies the equation

wt(x, y, t) − ∆w(x, y, t) = f (x, y, t,u1(x, y, t)) − f (x, y, t,u2(x, y, t)).

Thus

wt(x, y, t) − ∆w(x, y, t) =
∂ f
∂z

(x, y, t,u(x, y, t))w(x, y, t),

for some u(x, y, t).
It follows that

(wt − ∆w)2 ≤M2w2.

Now w(0, y, t) = w(π, y, t) = w(x, 0, t) = w(x, π, t) = 0 and w(x, y,T) = 0. Hence by the Lees-Protter
theorem [5], p. 373,

w = 0

which gives u1(x, y, t) = u2(x, y, t) for all t ∈ [0,T]. The proof is completed.

Despite the uniqueness, Problem (1)-(3) is still ill-posed.
Hence, a regularization has to resort. We have the following result
Theorem 3
Let ϕ, f be as in Theorem 1. Suppose Problem (1)-(3) has a unique solution u(x, y, t) in C([0,T]; H1

0(I)) ∩
C1((0,T); L2(I)) which satisfies
T∫

0

∞∑
n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds < ∞. Then

‖u(., ., t) − uε(., ., t)‖ ≤
√

Mexp(
3k2T(T − t)

2
)εt/T
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for every t ∈ [0,T], where M = 3‖u(0)‖2 + 3π2T
T∫

0

∞∑
n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds and uε is the unique solution of Problem

(4)-(6).

Remark.
1. If f (x, y, t,u(x, y, t)) = 0 then the error in this Theorem is similar to the results obtained in [4].

2. If the final value ϕ satisfies the condition
∞∑

n,m=1
e2T(n2+m2)ϕ2

nm < ∞, then by direct transform, the condition on f in

Theorem 3 is accepted.
Proof

Suppose the Problem (1)-(3) has an exact solution u ∈ C([0,T]; H1
0(I))∩ C1((0,T); L2(I)), we get the following

formula

u(x, y, t) =

∞∑

n,m=1

(e−(t−T)(n2+m2)ϕnm −
T∫

t

e−(t−s)(n2+m2) fnm(u)(s)ds) sin nx sin my (20)

and

u(x, y,T) =

∞∑

n,m=1

(e−T(n2+m2)unm(0) +

T∫

0

e−(T−s)(n2+m2) fnm(u)(s)ds) sin nx sin my

=

∞∑

n,m=1

ϕnm sin nx sin my

where unm(0) = 4
π2 < u(x, y, 0), sin nx sin my > (see [2]).

Hence e−T(n2+m2)unm(0) +
T∫

0
e−(T−s)(n2+m2) fnm(u)(s)ds = ϕnm.

From (7), (21) and (20), we get

|unm(t) − uεnm(t)|

= | εe−t(n2+m2)

e−T(n2+m2)(ε + e−T(n2+m2))
ϕnm −

T∫

t

εs/Te−t(n2+m2)

e−s(n2+m2)(εs/T + e−s(n2+m2))
fnm(u)(s)ds

−
T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
( fnm(u)(s) − fnm(uε)(s))ds)|

≤ | εe
−t(n2+m2)

ε + e−T(n2+m2)
unm(0) +

T∫

0

εe−t(n2+m2)

e−s(n2+m2)(ε + e−T(n2+m2))
fnm(u)(s)ds

−
T∫

t

εs/Te−t(n2+m2)

e−s(n2+m2)(εs/T + e−s(n2+m2))
fnm(u)(s)ds|

+

T∫

t

e−t(n2+m2)

εs/T + e−s(n2+m2)
| fnm(u)(s) − fnm(uε)(s)|ds. (21)
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From (20)-(21) and (22), we have

|unm(t) − uεnm(t)| ≤ ε.εt/T−1|unm(0)| +
∫ T

0
ε.εt/T−1| fnm(u)(s)

e−s(n2+m2)
|ds

+

T∫

t

εs/T.εt/T−s/T | fnm(u)(s)
e−s(n2+m2)

|ds +

T∫

t

εt/T−s/T | fnm(u)(s) − fnm(uε)(s)|ds

≤ εt/T |unm(0)| + 2εt/T

T∫

0

| fnm(u)(s)
e−s(n2+m2)

|ds

+ εt/T

T∫

t

ε−s/T | fnm(u)(s) − fnm(uε)(s)|ds.

We have in view of the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2)

‖u(., ., t) − uε(., ., t)‖2

=
π2

4

∞∑

n,m=1

|unm(t) − uεnm(t)|2

≤ 3π2

4

∞∑

n,m=1

ε2t/T |unm(0)|2 + 3π2
∞∑

n,m=1

ε2t/T(

T∫

0

| 1
e−s(n2+m2)

fnm(u)(s)|ds)2 +

3π2

4

∞∑

n,m=1

ε2t/T(
∫ T

t
ε−s/T | fnm(u)(s) − fnm(uε)(s)|ds)2

≤ 3ε2t/T‖u(0)‖2 + 3π2Tε2t/T

T∫

0

∞∑

n,m=1

(
1

e−s(n2+m2)
fnm(u)(s))2ds +

3π2

4
(T − t)ε2t/T

T∫

t

ε−2s/T
∞∑

n,m=1

( fnm(u)(s) − fnm(uε)(s))2ds

≤ 3ε2t/T‖u(0)‖2 + 3π2Tε2t/T

T∫

0

∞∑

n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds +

3(T − t)ε2t/T

T∫

t

ε−2s/T‖ f (., ., s,u(., ., s)) − f (., ., s,uε(., ., s))‖2ds

≤ ε2t/T(3‖u(0)‖2 + 3π2T

T∫

0

∞∑

n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds +

3k2T

T∫

t

ε−2s/T‖u(., ., s) − uε(., ., s)‖2ds.

Hence

ε−2t/T‖u(., ., t) − uε(., ., t)‖2 ≤ M + 3k2T
∫ T

t
ε−2s/T‖u(., ., s) − uε(., ., s)‖2ds
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where M = 3‖u(0)‖2 + 3π2T
T∫

0

∞∑
n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds.

By using Gronwall’s inequality, we get:

ε−2t/T‖u(., ., t) − uε(., ., t)‖2 ≤ Me3k2T(T−t).

Finally

‖u(., ., t) − uε(., ., t)‖2 ≤ Me3k2T(T−t)ε2t/T.

This completes the proof of Theorem 3.

One has
Theorem 4
Let ϕ, f be as in Theorem 1 and let u ∈ C([0,T]; H1

0(I)) ∩ C1((0,T); L2(I)) be a solution of Problem (1)-(3) such

that ∂u
∂t ∈ L2((0,T); L2(I)) and

T∫
0

∞∑
n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds < ∞. Then for all ε > 0 there exists a tε such that

‖u(., ., 0) − uε(., ., tε)‖ ≤ 4√
8C

4√
T
(
ln

(1
ε

))−1/4

where

N =

√√√√√√ T∫

0

∥∥∥∥∥
∂u
∂t

(., ., s)
∥∥∥∥∥

2

ds,

C = max



√√√√√√
3‖u0(., ., 0)‖2 + 3π2T

T∫

0

∞∑

n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds exp

(
3k2T2

2

)
,N



and uε is the unique solution of Problem (4)-(6).
Proof
First, using the Galerkin method (see, e.g.,[10] ), we can show that the assumption on ut holds if u(., ., 0) ∈
H1

0(I).
We have

u(x, y, t) − u(x, y, 0) =

t∫

0

∂u
∂s

(x, y, s)ds

It follows that

‖u(., ., 0) − u(., ., t)‖2 ≤ t

t∫

0

∥∥∥∥∥
∂u
∂t

(., ., s)
∥∥∥∥∥

2

ds ≤ N2t.

Using Theorem 3, we have

‖u(., ., 0) − uε(., ., t)‖ ≤ ‖u(., ., 0) − u(., ., t)‖ + ‖u(., ., t) − uε(., ., t)‖
≤ C(

√
t + εt/T).
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For every ε, there exists tε such that
√

tε = εtε/T, i.e.
lntε
tε

=
2lnε

T
.

Using inequality ln t > − 1
t for every t > 0, we get

‖u(., ., 0) − uε(., ., tε)‖ ≤ 4√
8C

4√
T
(
ln

(1
ε

))−1/4

.

This completed the proof of Theorem 4.

Theorem 5
Let ϕ, f be as in Theorem 1. Assume that the exact solution u of (1)−(3) corresponding to ϕ satisfies

u ∈ C([0,T]; L2(I)) ∩ L2(0,T; H1
0(I)) ∩ C1((0,T); L2(I)),

∂u
∂t
∈ L2((0,T); L2(I))

and ∫ T

0

∞∑

n=1

e2s(n2+m2) f 2
nm(u)(s)ds < ∞.

Let ϕε ∈ L2(I) be a measured data such that

‖ϕε − ϕ‖ ≤ ε.
Then there exists a function Uεsatisfying

‖Uε(., ., t) − u(., ., t)‖ ≤ (2 +
√

M) exp(
3k2T(T − t)

2
)εt/T, f or every t ∈ (0,T)

and

‖Uε(., ., 0) − u(., ., 0)‖ ≤ 4√
8

4√
T
(
ln

(1
ε

))−1/4 (
exp(k2T2) + C

)

where M = 3‖u(., ., 0)‖2 + 3π2T
T∫

0

∞∑
n,m=1

e2s(n2+m2) f 2
nm(u)(s)ds and C is defined in Theorem 4.

Proof
Let uε be the solution of problem (4)-(6) corresponding to ϕ and let wε be the solution of problem (4)-(6)

corresponding to ϕε where ϕ,ϕε are in right hand side of (6).
Using Theorem 4, there exists a tε such that
√

tε = εtε/T (22)

and

‖uε(., ., tε) − u(., ., 0)‖ ≤ 4√
8C

4√
T
(
ln

(1
ε

))−1/4

. (23)

Put

Uε(., ., t) =

{
wε(., ., t), 0 < t < T,
wε(., ., tε), t = 0 .

Using Theorem 3 and Step 3 in Theorem 1, we get:

‖uε(., ., t) − u(., ., t)‖ ≤ ‖wε(., ., t) − uε(., ., t)‖ + ‖uε(., ., t) − u(., ., t)‖

≤ (2 +
√

M) exp
(

3k2T(T − t)
2

)
εt/T,



Nguyen Huy Tuan et al. / Filomat 26:2 (2012), 83–97 95

for every t ∈ (0,T).
From Step 3 in Theorem 1, we have

‖Uε(., ., 0) − u(., ., 0)‖ ≤ ‖wε(., ., tε) − uε(., ., tε)‖ + ‖uε(., ., tε) − u(., ., 0)‖

≤ 2εtε/T exp(k2T2) +
4√
8C

4√
T
(
ln

(1
ε

))−1/4

≤ 4√
8

4√
T
(
ln

(1
ε

))−1/4 (
exp(k2T2) + C

)
.

This completed the proof of Theorem.

4. A numerical experiment

In this section, a example is devised for verifying the validity of the proposed method. Our main purpose
in this section is to give a simple analytical result. So, we don’t present some numerical experiments with
random perturbation. We consider

−∆u + ut = f (u) + 1(x, y, t)

where

f (u) =



u4 u ∈ [−e10, e10]
− e30

e−1 u + e41

e−1 u ∈ (e10, e11]
e30

e−1 u + e41

e−1 u ∈ (−e11,−e10]
0 |u| > e11

,

1(x, y, t) = 3et sin x sin y − e4t sin4 x sin4 y,

and
u(x, y, 1) = ϕ0(x, y) ≡ e sin x sin y.

The exact solution of the latter equation is

u(x, y, t) = et sin x sin y

Especially

u
(
x, y,

799
800

)
≡ u(x, y) = exp

(799
800

)
sin x sin y.

Let ϕε(x, y) ≡ ϕ(x, y) = (ε + 1)e sin x sin y.
We have

‖ϕε − ϕ‖2 =

√√√√√ π∫

0

π∫

0

ε2e2 sin2(x) sin2 ydxdy = εe
π
2

We find the regularized solution uε
(
x, y, 799

800

)
≡ uε(x, y) having the following form

uε(x, y) = vm(x, y) = w11,m sin x sin y + w12,m sin x sin 2y + w13,m sin x sin 3y +

+ w21,m sin 2x sin y + w22,m sin 2x sin 2y + w23,m sin 2x sin 3y +

+ w31,m sin 3x sin y + w32,m sin 3x sin 2y + w33,m sin 3x sin 3y

where

v1(x, y) = (ε + 1)e sin x sin y
w11,1 = (ε + 1)e,

w12,1 = w13,1 = w21,1 = w22,1 = w23,1 = w31,1 = w32,1 = w33,1 = 0.
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and


a = 1
40000

tm = 1 − am m = 1, 2, ..., 500

wi j,m+1 = e−tm+1(i2+ j2)

ε+e−tm (i2+ j2) wi j,m−

− 4
π2

tm∫
tm+1

e−tm+1(i2+ j2)

εs/tm +e−s(i2+ j2)


π∫

0

π∫
0

(
v4

m(x, y) + 1(x, y, s)
)

sin ix sin jydxdy

 ds, i, j = 1, 2, 3.

Let aε = ‖uε − u‖ be the error between the regularized solution uε and the exact solution u.
Let ε = ε1 = 10−5, ε = ε2 = 10−7, ε = ε3 = 10−11, we have

ε uε aε
ε1 = 10−4

5 2.513141464 sin x sin y − 0.1629918493.10−4 sin x sin 3y− 0.3168997337
−0.1629918493.10−4 sin 3x sin y + 0.2376014320.10−8 sin 3x sin 3y

ε2 = 10−5 2.605725660 sin x sin y − 0.1848200081.10−4 sin x sin 3y− 0.1714688215
−0.1848200076.10−4 sin 3x sin y + 0.2706307134.10−8 sin 3x sin 3y

ε3 = 10−7 2.700649206 sin x sin y − 0.9954278845.10−4 sin x sin 3y− 0.02236435269
−0.9954278660.10−4 sin 3x sin y + 0.3645200168.10−7 sin 3x sin 3y

5. Conclusion

The paper studies the a nonlocal boundary value problem for solving 2D nonlinear backward heat
equation in a rectangular domain. Some error estimate were derived, and one numerical example was
provided. The approach is based on transforming the problem into the Fourier domain. However, this
method does not apply to more general domain due to its reliance on the Fourier method. Is there any
alternative ways to derive similar estimates without resorting to the Fourier method. Otherwise the
approach is of limited interest. In the future, we hope that the regularized problem of finding problem on
general domain.
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