
Remarks on power automata∗

Miroslav Ćirić, Tatjana Petković, Stojan Bogdanović
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Abstract

The construction of power algebras is an important way for producing
new algebras from the given ones. Much information about an algebra can
be derived from that concerning its power algebras, and it is interesting to
treat the questions such as: What structural properties of A are inherited
by its power algebras, and to what extent does the structure of power
algebras of A determine that of A? In this paper1 we treat such questions
concerning automata.

1 Introduction and Preliminaries

For any algebra A, every its fundamental operation can be naturally extended
to its power set, which gives two new algebras of the same type – the power
algebra P(A) of all subsets of A and the power algebra P ′(A) of nonempty
subsets of A. This construction is an important way for producing new algebras
from the given ones. Much information about an algebra can be derived from
that concerning its power algebras, so it is interesting to treat the questions such
as: What structural properties of A are inherited by its power algebras, and to
what extent does the structure of power algebras of A determine that of A?
One of the most frequently used tools for describing the structure of algebras
are identities. It was proved in [15] that identities preserved under formation of
power algebras are the linear ones, i.e. identities both of whose sides contain at
most one appearance of each variable. Seeing that all automaton identities are
linear, it is interesting to make a deeper study of connections between identities
satisfied on automata and their power automata, which is the main aim of this
paper.

In Section 2 some general properties of power automata are described, and es-
pecially, connections between identities satisfied on an automaton and its power
automata are considered. The most interesting results are obtained in Section 3.
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By the main result of that section, the direct product of power automata P(Aα),
α ∈ Y , is isomorphic to the power automaton P(A), where A is a direct sum of
automata Aα, α ∈ Y .

The subject of Section 4 are varieties, generalized varieties and pseudovari-
eties generated by power automata. The study of certain natural operations on
classes of rational languages led to investigation of varieties, generalized varieties
and pseudovarieties of semigroups and monoids generated by power semigroups
and power monoids (see, for example, [10, 16, 14, 11, 8, 2, 3]), and in [16]
two power operators P and P′ were introduced, which to any variety (resp.
generalized variety, pseudovariety) K assign the varieties (resp. generalized va-
rieties, pseudovarieties) P(K) and P′(K) generated by {P(A) |A ∈ K} and
{P ′(A) |A ∈ K}, respectively. It was proved in [8] (see also [3]) that the itera-
tion of the operators P and P′ on pseudovarieties of semigroups and monoids
stabilizes in three steps, and in [2] it was shown that on varieties of semigroups
P′ is idempotent and the iteration of P stabilizes in two steps. Here we consider
similar problems concerning varieties, generalized varieties and pseudovarieties
of automata and we prove that in the case of automata the situation is much
simpler. Namely, we prove that in every of these three cases, both of these power
operators are idempotent, i.e. they are closure operators, and in addition, P′ is
the identity operator, whereas P equals the regularization operator.

Automata considered throughout this paper will be automata without out-
puts in the sense of the definition from the book by F. Gécseg and I. Peák [7].
It is well known that automata without outputs, with the input alphabet X,
can be considered as unary algebras of type indexed by X, so the notions such
as a congruence, homomorphism, generating set etc., have their usual algebraic
meanings (see, for example, [6]). The state set and the input set of an automa-
ton are not necessarily finite. In order to simplify the notations, an automaton
with the state set A is also denoted by the same letter A. For any considered
automaton A, its input alphabet is denoted by X, and the free monoid over X,
the input monoid of A, is denoted by X∗. Under the action of an input word
u ∈ X∗, the automaton A goes from a state a into the state denoted by au.

A state a of an automaton A is called a trap of A if au = a, for every word
u ∈ X∗. Automaton all of whose states are traps is called a discrete automaton
and the class of all discrete automata is denoted by D. By D2 the discrete
automaton with two states is denoted. An automaton A is called a direct sum
of its subautomata Aα, α ∈ Y , if A =

⋃
α∈Y Aα and Aα ∩ Aβ = ∅, for every

α, β ∈ Y such that α 6= β. The direct sum of an automaton A and the trivial
automaton is called the trap-extension of A and denoted by At. A word u ∈ X∗

is called a directing word of an automaton A if au = bu, for every a, b ∈ A, and
the set of all directing words of A is denoted by DW (A). If DW (A), then there
exists the unique state du ∈ A such that au = du, for every a ∈ A, and it is
called the u-neck of A. A state d ∈ A is called a neck of A if it is a u-neck of
A, for some u ∈ DW (A).

If K is a class of automata, then by H(K) (resp. I(K), S(K), P(K),
Pf (K), Pow(K)) we denote the class of all homomorphic images (resp. isomor-
phic copies, subautomata, direct products, finite direct products, direct powers)
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of automata from K. A class of closed under the operators H, S and P is called
a variety , a class closed under the operators H, S, Pf and Pow is a gener-
alized variety , and a class of finite automata closed under the operators H,
S and Pf is called a pseudovariety . For an arbitrary class K of automata,
V(K) = HSP(K) (resp. G(K) = HSPfPow(K)) is the least variety (resp.
generalized variety) containing K and it is called the variety (resp. gener-
alized variety) generated by K, and if K is a class of finite automata, then
Pv(K) = HSPf (K) is the least pseudovariety containing K, and it is called
the pseudovariety generated by K.

A term of type X∗ is any expression of the form gu, where u ∈ X∗ and
g /∈ X∗ is a symbol which is called a variable. A formal equality s = t of
two terms s and t is called an identity . An identity of the form gu = gv is
called regular , and an identity of the form gu = hv, where g and h are distinct
variables, is called irregular . An automaton A satisfies an identity s = t if
s and t give rise to the same state of A for every possible substitution of states of
A for the variables appearing in s and t, and A satisfies a set of identities Σ, in
notation A |= Σ, if it satisfies every identity from this set. It is well known that
a class of automata K is a variety if and only if it is the class of all automata
satisfying some set of identities Σ, and then K is said to be defined by the set
of identities Σ. A variety K is called regular if it can be defined by a set of
regular identities. Otherwise it is called an irregular variety . If K is a variety
defined by a set of identities Σ, then the variety R(K) defined by the set ΣR of
all regular identities from Σ is the least regular variety containing K, and it is
called the regularization of the variety K.

A family {Hi}i∈I of sets is said to be directed if for every i, j ∈ I there
exists k ∈ I such that Hi ⊆ Hk and Hj ⊆ Hk. It is known (see [1]) that a
class of automata is a generalized variety if and only if it can be represented
as the union of a directed family of varieties. If K can be represented as the
union of a directed family of regular varieties, then it is said to be a regular
generalized variety . Otherwise it is called irregular . It was proved in [4] that a
generalized variety of automata K is regular if and only if D2 ∈ K. For every
generalized variety K there exists the least regular generalized variety R(K)
containing K, called its regularization. It was proved in [1] that a class of finite
automata is a pseudovariety if and only if it is the class the class of all finite
automata from some generalized variety of automata. If K is the class of all
finite automata from some regular generalized variety, then it is said to be a
regular pseudovariety . Otherwise it is called irregular . For a pseudovariety K,
by R(K) we denote the regularization of K, i.e. the least regular pseudovariety
containing K.

For undefined notions and notations we refer to the books [7] and [6].

2 Some General Properties

For an automaton A, by P(A) we denote the set of all subsets of A, i.e. its power
set , and by P ′(A) the set of all nonempty subsets of A. If for H ∈ P ′(A) and
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u ∈ X∗ we set Hu = {au | a ∈ H}, and ∅u = ∅, then this defines transitions
on P(A) and P ′(A) so that P(A) and P ′(A) become automata called the power
automata of A. It can be seen easily that P(A) is a trap-extension of and P ′(A).
For a class K of automata we set

P(K) = {P(A) |A ∈ K} and P ′(K) = {P ′(A) |A ∈ K}.
In this section we describe some general properties of power automata.

Lemma 2.1 Every automaton A can be embedded into its power automata
P ′(A) and P(A).

Proof. The mapping a 7→ {a} is an embedding of A into P ′(A). It is also an
embedding into P(A), since P(A) is a trap-extension of P ′(A).

Lemma 2.2 Let B be a subautomaton of an automaton A. Then P ′(B) is a
subautomaton of P ′(A) and P(B) is a subautomaton of P(A).

In view of Lemma 2.1, in the next theorem the automaton A is treated as a
subautomaton of its power automata P ′(A) and P(A).

Theorem 2.1 Every mapping ϕ of an automaton A into an automaton B can
be extended to a mapping ϕ̂ of P(A) into P(B) such that the following conditions
hold:

(a) ϕ̂ maps P ′(A) into P ′(B).
(b) ϕ is a homomorphism, one-to-one or onto if and only if ϕ̂ has the same

property.

Proof. For H ∈ P ′(A) let Hϕ̂ = {aϕ | a ∈ H} and let ∅ϕ̂ = ∅. It is evident
that ϕ̂ is an extension of ϕ and that (a) holds.

(b) Let ϕ be a homomorphism and let H ∈ P ′(A). Then

b ∈ (Hϕ̂)u ⇔ b = (aϕ)u, for some a ∈ H
⇔ b = (au)ϕ), for some a ∈ H
⇔ b ∈ (Hu)ϕ̂).

Thus ϕ̂ is a homomorphism.
Let ϕ be one-to-one. Suppose that H1ϕ̂ = H2ϕ̂ for some H1,H2 ∈ P(A).

If H1ϕ̂ = H2ϕ̂ = ∅, then H1 = H2 = ∅. Let H1ϕ̂ = H2ϕ̂ 6= ∅. Then
H1,H2 ∈ P ′(A). For any a ∈ H1 we have that aϕ ∈ H1ϕ̂ = H2ϕ̂, which means
that aϕ = bϕ, for some b ∈ H2. Since ϕ is one-to-one, then a = b ∈ H2, so we
have proved that H1 ⊆ H2. Similarly we prove that H2 ⊆ H1. Hence H1 = H2

and we have proved that ϕ̂ is also one-to-one.
Finally, suppose that ϕ maps A onto B. Let H ′ ∈ P ′(B) and let H = {a ∈

A | aϕ ∈ H ′}. Since ϕ is onto, then H ′ = {aϕ | a ∈ H} = Hϕ̂. Therefore, ϕ̂
maps P(A) onto P(B).

Conversely, if ϕ̂ is a homomorphism or one-to-one, then ϕ has the same
property, as a restriction of ϕ̂. If ϕ̂ maps P(A) onto P(B), then for any b ∈ B
there exists H ∈ P ′(A) such that Hϕ̂ = {b}, that is aϕ = b, for each a ∈ H, so
we have that ϕ maps A onto B.
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Next we consider identities satisfied on power automata.

Lemma 2.3 Let A be any automaton. An automaton identity s = t is satisfied
on At if and only if it is regular and it is satisfied on A.

Lemma 2.4 ([4], [9]) An irregular identity gu = hv is satisfied on an automaton
A if and only if u, v ∈ DW (A) and they determine the same neck of A.

By the previous two lemmas we obtain the following:

Theorem 2.2 Let A be an arbitrary automaton and let s = t be an arbitrary
automaton identity. Then

(a) The identity s = t is satisfied on the power automaton P ′(A) if and only
if it is satisfied on A.

(b) The identity s = t is satisfied on the power automaton P(A) if and only
if it is regular and it is satisfied on A.

Proof. (a) Let A satisfies s = t. If s = t is a regular identity, i.e. if it has the
form gu = gv, for some u, v ∈ X∗, then au = av for each a ∈ A, and for every
H ∈ P ′(A) we have that

Hu = {au | a ∈ H} = {av | a ∈ H} = Hv,

which means that P ′(A) satisfies gu = gv. On the other hand, if s = t is an
irregular identity, i.e. it has the form gu = hv, where g 6= v and u, v ∈ X∗, then
u, v ∈ DW (A) and du = dv, by Lemma 2.4, and for arbitrary H1,H2 ∈ P ′(A)
we have that

H1u = {du} = {dv} = H2v,

which means that P ′(A) satisfies gu = hv. This completes the proof for (a).
(b) This follows by Lemma 2.3 and the fact that P(A) is the trap-extension

of P ′(A).

The transition semigroup of an automaton A is defined as the subsemigroup
of the full transformation semigroup of A generated by all mappings ηu : a 7→ au,
u ∈ X∗. It is known that this semigroup is isomorphic to the factor semigroup of
the free semigroup X∗ with respect to the Myhill congruence µA defined on X∗

by: (u, v) ∈ µA ⇔ au = av, for every a ∈ A. This equivalent way for defining
the transition semigroup is used in the proof of the following consequence of
Theorem 2.2.

Now we are ready to state the following consequence of Theorem 2.2:

Corolarry 2.1 Automata A, P ′(A) and P(A) have isomorphic transition semi-
groups, for every automaton A.

Proof. It is clear that the Myhill congruence of an automaton consists of all
pairs of words (u, v) such that the regular identity gu = gv is satisfied on this
automaton. By this fact and by Theorem 2.2 it follows that the automata A,
P ′(A) and P(A) have the same Myhill congruence, so they have isomorphic
transition semigroups.
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3 Direct Products of Power Automata

In this section we describe some properties of direct products of power automata.
The first theorem of the section establishes a very interesting connection

between direct products of power automata and direct sums of automata.

Theorem 3.1 Let Aα, α ∈ Y , be any family of automata. An automaton B is
isomorphic to the direct product of power automata P(Aα), α ∈ Y , if and only
if it is isomorphic to the power automaton P(A), where A is the direct sum of
automata Aα, α ∈ Y .

Proof. Let A be the direct sum of automata Aα, α ∈ Y . We have to prove
that the power automaton P(A) is isomorphic to the direct product of automata
P(Aα), α ∈ Y . Define a mapping

ϕ : P(A) →
∏

α∈Y

P(Aα)

as follows. For H ∈ P(A) let

Hϕ = (Hα)α∈Y , where Hα = H ∩Aα, α ∈ Y.

By a straightforward verification we obtain that ϕ is a one-to-one and onto. It
remains to check that ϕ is a homomorphism. Indeed, let H ∈ P(A) and u ∈ X∗,
let Hu = H ′, and for any α ∈ Y let Hα = H ∩ Aα and H ′

α = H ′ ∩ Aα. Then
for any α ∈ Y we have that

b ∈ Hαu ⇔ b = au, for some a ∈ Hα

⇔ b = au, for some a ∈ H ∩Aα

⇔ b ∈ Hu and b ∈ Aα

⇔ b ∈ H ′ and b ∈ Aα

⇔ b ∈ H ′
α.

Thus
(Hϕ)u = (Hαu)α∈Y = (H ′

α)α∈Y = H ′ϕ = (Hu)ϕ.

This completes the proof of the theorem.

Corolarry 3.1 Let K be a class of automata which is closed under isomorphic
copies and (finite) direct sums. Then the class P(K) is closed under (finite)
direct products.

Proof. Let an automaton P be isomorphic to the direct product of automata
Pα, α ∈ Y , where Pα ∈ P(K), for each α ∈ Y . This means that Pα

∼= P(Aα)
for some Aα ∈ K. Without loss of generality we can assume that Aα ∩Aβ = ∅
for α 6= β. Let A be the direct sum of automata Aα, α ∈ Y . Then by Theorem
3.1 we have that the power automaton P(A) is isomorphic to the direct product
of automata Pα, α ∈ Y , that is to the automaton P . Thus P ∈ P(K), which
was to be proved.
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Corolarry 3.2 Let K be a class of automata which is closed under finite direct
products and contains the class D of discrete automata. Then the class P(K)
is closed under direct powers.

Proof. Let an automaton A be a direct power of some automaton P(B), where
B ∈ K, i.e. A ∼= (P(B))Y , for some nonempty set Y . Define the transitions on
Y by: αu = α, for every α ∈ Y and u ∈ X∗. Then Y is a discrete automaton,
and if we set Bα = B × {α}, then Bα is an automaton isomorphic to B, for
each α ∈ Y . Let C be the direct sum of automata Bα, α ∈ Y . It is evident that
C ∼= B×Y , and since B, Y ∈ K and K is closed under finite direct products, by
the assumptions of the corollary, then C ∈ K. On the other hand, by Theorem
3.1 it follows that

P(C) ∼=
∏

α∈Y

P(Bα) ∼= (P(B))Y ∼= A.

Thus A ∈ P(K), so we have proved that the class P(K) is closed under direct
powers.

Theorem 3.2 Let Aα, α ∈ Y , be any family of automata. Then the direct
product of automata P ′(A), α ∈ Y , is isomorphic to a subautomaton of P ′(A),
where A is the direct product of automata Aα, α ∈ Y .

Proof. It can be easily verified that the mapping (Hα)α∈Y 7→ ∏
α∈Y Hα is an

embedding of the direct product of automata P ′(Aα), α ∈ Y , into the automaton
P ′(A).

4 Varieties, Generalized Varieties and Pseudova-
rieties Generated by Power Automata

In this section we study closure properties of varieties, generalized varieties and
pseudovarieties generated by power automata.

First we prove the following lemma.

Lemma 4.1 Let K be an arbitrary class of automata. Then

K ⊆ S(P ′(K)) ⊆ S(P(K)).

Proof. Consider an arbitrary A ∈ K. Then A ∼= A′, where A′ is a subautoma-
ton of P ′(A), so

A ∈ IS(P ′(K)) = SI(P ′(K)) = S(P ′(K)).

Thus K ⊆ S(P ′(K)), and clearly S(P ′(K)) ⊆ S(P(K)).
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In the next theorem we consider varieties generated by power automata.

Theorem 4.1 Let K be an arbitrary variety of automata. Then

(a) V(P ′(K)) = S(P ′(K)) = K.
(b) V(P(K)) = SP(P(K)) = R(K).

If K is a regular variety, then

(c) V(P(K)) = S(P(K)) = K.

Proof. (a) Let A ∈ P ′(K), i.e. let A ∼= P ′(B), for some B ∈ K. Moreover, let
the variety K be defined by a set of identities Σ. Then B |= Σ, whence A |= Σ,
by Theorem 2.2, so we have that A ∈ K. Thus P ′(K) ⊆ K and by this it
follows

V(P ′(K)) ⊆ K. (1)

On the other hand, by Lemma 4.1 we have that

K ⊆ S(P ′(K)) ⊆ HSP(P ′(K)) = V(P ′(K)). (2)

Therefore, by (1) and (2) it follows that (a) holds.

(b) It is evident that

SP(P(K)) ⊆ HSP(P(K)) = V(P(K)). (3)

To prove that
V(P(K)) ⊆ R(K) (4)

consider an arbitrary A ∈ P(K). Then A ∼= P(B) for some B ∈ K. Let Σ be
the set of all identities satisfied in the variety K and let ΣR be the set of all
regular identities from Σ. By B ∈ K it follows that B |= Σ, and by Theorem
2.2 we have that P(B) |= ΣR, i.e. A |= ΣR. Therefore, A ∈ [ΣR] = R(K),
which yields P(K) ⊆ R(K), and hence (4) holds.

It remains to prove
R(K) ⊆ SP(P(K)). (5)

To prove this inclusion consider an arbitrary A ∈ R(K). It was proved in
[12] (see also [4]) that R(K) consists of automata which are direct sums of
automata from K, so A is a direct sum of automata Aα, α ∈ Y , such that
Aα ∈ K, for each α ∈ Y . By Theorem 3.1 it follows that P(A) ∼= ∏

α∈Y P(Aα),
so P(A) ∈ IP(P(K)). On the other hand, A ∼= A′, where A′ is a subautomaton
of P(A) so that

A ∈ ISIP(P(K)) = SPI(P(K)) = SP(P(K))

By this it follows that (5) holds. Now, the equations (3), (4) and (5) yield the
assertion (b).

The assertion (c) follows by (b) and Lemma 4.1.
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Next we consider generalized varieties generated by power automata.

Theorem 4.2 Let K be an arbitrary generalized variety of automata. Then

(a) G(P ′(K)) = S(P ′(K)) = K.

(b) G(P(K)) = R(K).

If K is a regular generalized variety, then

(c) G(P(K)) = S(P(K)) = K.

Proof. (a) Let K be represented as the union of a directed family of varieties
{V i}i∈I . By Theorem 4.1 it follows that

P ′(K) =
⋃

i∈I

P ′(V i) ⊆
⋃

i∈I

V i = K,

whence
G(P ′(K)) ⊆ K. (6)

On the other hand, by Lemma 4.1 we have that

K ⊆ S(P ′(K)) ⊆ HSPfPow(P ′(K)) = G(P ′(K)),

which with (6) gives the assertion (a).
(b) We have that D2

∼= P(A), where A is an automaton with only one state,
so D2 ∈ P(O) ⊆ P(K) ⊆ G(P(K)). According to a result proved in [4], a
generalized variety is regular if and only if it contains D2, so we conclude that
G(P(K)) is a regular generalized variety, and hence R(K) ⊆ G(P(K)).

It remains to prove the opposite inclusion. Let R(K) be the union of a
directed family of regular varieties {V i}i∈I , and let A ∈ P(K), i.e. A ∼= P(B),
for some B ∈ K. Then B ∈ R(K), whence B ∈ V i, for some i ∈ I, so

A ∈ P(V i) ⊆ V(P(V i)) = V i ⊆ R(K),

by Theorem 4.1, because V i is a regular variety. Therefore, we have obtained
that P(K) ⊆ R(K), whence G(P(K)) ⊆ R(K), which was to be proved.

The claim (c) follows by (b) and Lemma 4.1.

Finally, we study pseudovarieties generated by power automata.

Theorem 4.3 Let K be an arbitrary pseudovariety of automata. Then

(a) P(P ′(K)) = S(P ′(K)) = K.
(b) P(P(K)) = SPf (P(K)) = R(K).

If K is a regular pseudovariety, then

(c) P(P(K)) = S(P(K)) = K.

Proof. The proof of this theorem is similar to the proof of Theorem 4.1.
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sbogdan@pmf.ni.ac.yu

Teachers Training Faculty, University of Nǐs
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